Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 645
Filtrar
1.
Aquat Toxicol ; 268: 106854, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309221

RESUMO

The interactions between estrogen and androgen in aquatic animals remain largely unknown. In this study, two generations (F0 and F1) of western mosquitofish (Gambusia affinis) were continuously exposed to 17α-ethinylestradiol (EE2, 10 ng/L), methyltestosterone (MT, 10 ng/L (MTL); 50 ng/L (MTH)), and mixtures (EE2+MTL and EE2+MTH). Various endpoints, including sex ratio (phenotypic and genetic), secondary sex characteristics, gonadal histology, and transcriptional profile of genes, were examined. The results showed that G. affinis exposed to MTH and EE2+MTH had a > 89.7 % of phenotypic males in F1 generation, with 34.5 and 50.0 % of these males originated from genetic females, respectively. Moreover, females from F0 and F1 generations exposed to MTH and EE2+MTH exhibited masculinized anal fins and skeletons. The combined effect of MT and EE2 on most endpoints was dependent on MT. Furthermore, significant transcriptional alterations in certain target genes were observed in both the F0 and F1 generations by EE2 and MT alone and by mixtures, showing some degree of interactions. These findings that the effects of EE2+MTH were primarily on the phenotypic sex of G. affinis in offspring generation suggest that G. affinis under chronic exposure to the binary mixture contaminated water could have sex-biased populations.


Assuntos
Ciprinodontiformes , Poluentes Químicos da Água , Masculino , Feminino , Animais , Etinilestradiol/toxicidade , Metiltestosterona/toxicidade , Poluentes Químicos da Água/toxicidade , Estrogênios , Ciprinodontiformes/genética
2.
Reprod Toxicol ; 125: 108557, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360075

RESUMO

Tetra-amido macrocyclic ligands (TAMLs) are catalysts designed to mimic endogenous peroxidases that can degrade pollutants. Before TAMLs gain widespread use, it is first important to determine if they have endocrine disrupting properties. In this study, we evaluated the effects of the iron TAML, NT7, on hormone-sensitive outcomes in mice exposed during pregnancy and lactation, and on their litters prior to weaning. We administered NT7 at one of three doses to mice via drinking water prior to and then throughout pregnancy and lactation. Two hormonally active pharmaceuticals, ethinyl estradiol (EE2) and flutamide (FLUT), a known estrogen receptor agonist and androgen receptor antagonist, respectively, were also included. In the females, we measured pre- and post-parturition weight, length of pregnancy, organ weights at necropsy, and morphology of the mammary gland at the end of the lactational period. We also quantified maternal behaviors at three stages of lactation. For the offspring, we measured litter size, litter weights, and the achievement of other developmental milestones. We observed only one statistically significant effect of NT7, a decrease in the percentage of pups with ear opening at postnatal day 5. This contrasts with the numerous effects of EE2 on both the mother and the litter, as well as several modest effects of FLUT. The approach taken in this study could provide guidance for future studies that aim to evaluate novel compounds for endocrine disrupting properties.


Assuntos
Estrogênios , Lactação , Gravidez , Feminino , Animais , Camundongos , Estrogênios/farmacologia , Flutamida , Tamanho da Ninhada de Vivíparos , Etinilestradiol/toxicidade
3.
Toxicol In Vitro ; 96: 105782, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244730

RESUMO

Estrogen-induced intrahepatic cholestasis (IHC) is a mild but potentially serious risk and urges for new therapeutic targets and effective treatment. Our previous study demonstrated that RORγt and CXCR3 signaling pathway of invariant natural killer T (iNKT) 17 cells play pathogenic roles in 17α-ethinylestradiol (EE)-induced IHC. Ursodeoxycholic acid (UDCA) and 18ß-glycyrrhetinic acid (GA) present a protective effect on IHC partially due to their immunomodulatory properties. Hence in present study, we aim to investigate the effectiveness of UDCA and 18ß-GA in vitro and verify the accessibility of the above targets. Biochemical index measurement indicated that UDCA and 18ß-GA presented efficacy to alleviate EE-induced cholestatic cytotoxicity. Both UDCA and 18ß-GA exhibited suppression on the CXCL9/10-CXCR3 axis, and significantly restrained the expression of RORγt in vitro. In conclusion, our observations provide new therapeutic targets of UDCA and 18ß-GA, and 18ß-GA as an alternative treatment for EE-induced cholestasis.


Assuntos
Colestase , Ácido Glicirretínico , Células T Matadoras Naturais , Receptores CXCR3 , Ácido Ursodesoxicólico , Colestase/induzido quimicamente , Colestase/tratamento farmacológico , Etinilestradiol/toxicidade , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/uso terapêutico , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Transdução de Sinais , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêutico , Animais , Camundongos
4.
Drug Chem Toxicol ; 47(1): 60-66, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36912201

RESUMO

Endocrine disruptors, such as estrogen, are chemical substances with the potential to alter the hormonal balance of organisms. Their origin can be natural or artificial, and they can act at very low doses. The estrogen 17α-ethinylestradiol (EE2) is used worldwide as an oral contraceptive and is a potential contaminant in aquatic ecosystems. It is well documented that these environmental pollutants can act directly or indirectly on the reproductive system, impairing development and fertility. However, little is known about the alteration of the cell oxidative status induced by EE2. The main objective of this study was to evaluate the effect on the gill cells of adult zebrafish exposed in vivo to EE2, analyzing cell histology, DNA damage and the expression levels of genes encoding the main enzymes involved in oxidative stress pathways. The histological study showed that EE2 produces moderate to high damage to the gill tissue, an increase in gill cell DNA damage and the mRNA levels of the genes corresponding to the manganese superoxide dismutase (Mn-sod) and catalase (cat) after exposure to 5 ng/L EE2. The results indicate that EE2 causes tissue alterations, DNA damage and oxidative stress. EE2 produced important alterations in the gills, a fundamental organ for the survival of fish. There is a clear need for further research on the ecological consequences of EDCs on non-target organisms.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/genética , Antioxidantes/farmacologia , Brânquias , Ecossistema , Etinilestradiol/toxicidade , Estrogênios/farmacologia , Dano ao DNA , Poluentes Químicos da Água/toxicidade
5.
Reprod Toxicol ; 123: 108517, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040386

RESUMO

Estrogenic chemicals are common pollutants in wastewater and current effluent treatment processes are not typically effective in removing these compounds. Tetra-amido macrocyclic ligands (TAMLs) are catalysts that mimic endogenous peroxidases that may provide a solution to remove environmental pollutants including low concentrations of estrogenic compounds. Yet relatively little is known about the toxicity of TAMLs, and few studies have evaluated whether they may have endocrine disrupting properties. We administered one of three doses of a TAML, NT7, to mice via drinking water throughout pregnancy and lactation. Two pharmacologically active compounds, ethinyl estradiol (EE2) and flutamide were also included to give comparator data for estrogen receptor agonist and androgen receptor antagonist activities. Male pups were evaluated for several outcomes at weaning, puberty, and early adulthood. We found that EE2 exposures during gestation and the perinatal period induced numerous effects that were observed across the three ages including changes to spleen and testis weight and drastic effects on the morphology of the mammary gland. Flutamide had fewer effects but altered anogenital distance at weaning as well as spleen, liver, and kidney weight. In contrast, relatively few effects of NT7 were observed, but included alterations to spleen weight and modest changes to adult testis weight and morphology of the mammary gland at weaning. Collectively, these results provide some of the first evidence suggesting that NT7 may alter some hormone-sensitive outcomes, but that the effects were distinct from either EE2 or flutamide. Additional studies are needed to characterize the biological activity of this and other TAML catalysts.


Assuntos
Flutamida , Maturidade Sexual , Gravidez , Feminino , Camundongos , Animais , Masculino , Flutamida/toxicidade , Estrogênios/toxicidade , Etinilestradiol/toxicidade , Lactação
6.
Environ Toxicol Chem ; 43(4): 772-783, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38116984

RESUMO

Understanding species differences in sensitivity to toxicants is a critical issue in ecotoxicology. We recently established that double-crested cormorant (DCCO) embryos are more sensitive than Japanese quail (JQ) to the developmental effects of ethinylestradiol (EE2). We explored how this difference in sensitivity between species is reflected at a transcriptomic level. The EE2 was dissolved in dimethyl sulfoxide and injected into the air cell of eggs prior to incubation at nominal concentrations of 0, 3.33, and 33.3 µg/g egg weight. At midincubation (JQ 9 days; DCCO 16 days), livers were collected from five embryos/treatment group for RNA sequencing. Data were processed and analyzed using EcoOmicsAnalyst and ExpressAnalyst. The EE2 exposure dysregulated 238 and 1,987 genes in JQ and DCCO, respectively, with 78 genes in common between the two species. These included classic biomarkers of estrogen exposure such as vitellogenin and apovitellenin. We also report DCCO-specific dysregulation of Phase I/II enzyme-coding genes and species-specific transcriptional ontogeny of vitellogenin-2. Twelve Kyoto Encyclopedia of Genes and Genomes pathways and two EcoToxModules were dysregulated in common in both species including the peroxisome proliferator-activated receptor (PPAR) signaling pathway and fatty acid metabolism. Similar to previously reported differences at the organismal level, DCCO were more responsive to EE2 exposure than JQ at the gene expression level. Our description of differences in transcriptional responses to EE2 in early life stage birds may contribute to a better understanding of the molecular basis for species differences. Environ Toxicol Chem 2024;43:772-783. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Coturnix , Etinilestradiol , Animais , Etinilestradiol/toxicidade , Coturnix/genética , Vitelogeninas , Perfilação da Expressão Gênica , Fígado
7.
Food Chem Toxicol ; 182: 114085, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844793

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) and 17α-ethinylestradiol (EE2) are extensively used in human and veterinary medicine. Due to their partial removal by wastewater treatment plants, they are frequent environmental contaminants, particularly in drinking water. Here, we investigated the adverse outcomes of chronic exposure to mixtures of NSAIDs (ibuprofen, 2hydroxy-ibuprofen, diclofenac) and EE2 at two environmentally relevant doses in drinking water, on the reproductive organ development and fertility in F1-exposed male and female mice and in their F2 offspring. In male and female F1 mice, which were exposed to these mixtures, reproductive organ maturation, estrous cyclicity, and spermiogenesis were altered. These defects were observed also in F2 animals, in addition to some specific sperm parameter alterations in F2 males. Transcriptomic analysis revealed significant changes in gene expression patterns and associated pathways implicated in testis and ovarian physiology. Chronic exposure of mice to NSAID and EE2 mixtures at environmental doses intergenerationally affected male and female fertility (i.e. total number of pups and time between litters). Our study provides new insights into the adverse effects of these pharmaceuticals on the reproductive health and will facilitate the implementation of a future regulatory environmental risk assessment of NSAIDs and EE2 for human health.


Assuntos
Água Potável , Poluentes Químicos da Água , Humanos , Masculino , Animais , Camundongos , Etinilestradiol/toxicidade , Reprodução , Ibuprofeno/farmacologia , Sêmen , Fertilidade , Anti-Inflamatórios não Esteroides/toxicidade , Poluentes Químicos da Água/toxicidade
8.
Aquat Toxicol ; 260: 106584, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37267806

RESUMO

Estrogenic endocrine disrupting chemicals (EEDC) have been suspected to impact offspring in a transgenerational manner via modifications of the germline epigenome in the directly exposed generations. A holistic assessment of the concentration/ exposure duration-response, threshold level, and critical exposure windows (parental gametogenesis and embryogenesis) for the transgenerational evaluation of reproduction and immune compromise concomitantly will inform the overall EEDC exposure risk. We conducted a multigenerational study using the environmental estrogen, 17α-ethinylestradiol (EE2), and the marine laboratory model fish Oryzias melastigma (adult, F0) and their offspring (F1-F4) to identify transgenerationally altered offspring generations and phenotype persistence. Three exposure scenarios were used: short parental exposure, long parental exposure, and a combined parental and embryonic exposure using two concentrations of EE2 (33ng/L, 113ng/L). The reproductive fitness of fish was evaluated by assessing fecundity, fertilization rate, hatching success, and sex ratio. Immune competence was assessed in adults via a host-resistance assay. EE2 exposure during both parental gametogenesis and embryogenesis was found to induce concentration/ exposure duration-dependent transgenerational reproductive effects in the unexposed F4 offspring. Furthermore, embryonic exposure to 113 ng/L EE2 induced feminization of the directly exposed F1 generation, followed by subsequent masculinization of the F2 and F3 generations. A sex difference was found in the transgenerationally impaired reproductive output with F4 females being sensitive to the lowest concentration of EE2 (33 ng/L) upon long-term ancestral parent exposure (21 days). Conversely, F4 males were affected by ancestral embryonic EE2 exposure. No definitive transgenerational impacts on immune competence were identified in male or female offspring. In combination, these results indicate that EEDCs can be transgenerational toxicants that may negatively impact the reproductive success and population sustainability of fish populations.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Feminino , Masculino , Oryzias/fisiologia , Aptidão Genética , Poluentes Químicos da Água/toxicidade , Reprodução , Fertilidade , Etinilestradiol/toxicidade
9.
Aquat Toxicol ; 261: 106607, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354817

RESUMO

Several adverse outcome pathways (AOPs) have linked molecular initiating events like aromatase inhibition, androgen receptor (AR) agonism, and estrogen receptor (ER) antagonism to reproductive impairment in adult fish. Estrogen receptor agonists can also cause adverse reproductive effects, however, the early key events (KEs) in an AOP leading to this are mostly unknown. The primary aim of this study was to develop hypotheses regarding the potential mechanisms through which exposure to ER agonists might lead to reproductive impairment in female fish. Mature fathead minnows were exposed to 1 or 10 ng 17α-ethynylestradiol (EE2)/L or 10 or 100 µg bisphenol A (BPA)/L for 14 d. The response to EE2 and BPA was contrasted with the effects of 500 ng/L of 17ß-trenbolone (TRB), an AR agonist, as well as TRB combined with the low and high concentrations of EE2 or BPA tested individually. Exposure to 10 ng EE2/L, 100 µg BPA/L, TRB, or the various mixtures with TRB caused significant decreases in plasma concentrations of 17ß-estradiol. Exposure to TRB alone caused a significant reduction in plasma vitellogenin (VTG), but VTG was unaffected or even increased in females exposed to EE2 or BPA alone or, in most cases, in mixtures with TRB. Over the course of the 14-d exposure, the only treatments that clearly did not affect egg production were 1 ng EE2/L and 10 µg BPA/L. Based on these results and knowledge of hypothalamic-pituitary-gonadal axis function, we hypothesize an AOP whereby decreased production of maturation-inducing steroid leading to impaired oocyte maturation and ovulation, possibly due to negative feedback or direct inhibitory effects of membrane ER activation, could be responsible for causing adverse reproductive impacts in female fish exposed to ER agonists.


Assuntos
Rotas de Resultados Adversos , Cyprinidae , Poluentes Químicos da Água , Animais , Feminino , Androgênios/metabolismo , Poluentes Químicos da Água/toxicidade , Estrogênios/toxicidade , Estrogênios/metabolismo , Etinilestradiol/toxicidade , Etinilestradiol/metabolismo , Cyprinidae/metabolismo , Vitelogeninas/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-37207740

RESUMO

Tributyltin (TBT)-binding protein type 1 in Japanese medaka (Oryzias latipes) (O.latTBT-bp1) is a fish lipocalin implicated in TBT binding and detoxification. We purified recombinant O.latTBT-bp1 (rO.latTBT-bp1; ca. 30 kDa) by using a baculovirus expression system and His- and Strep-tag chromatography process. Then, we examined O.latTBT-bp1 binding to several endo/exogenous steroid hormones by means of competitive binding assay. The dissociation constants for the binding of rO.latTBT-bp1 to DAUDA and ANS, two fluorescent ligands of lipocalin, were 7.06 and 13.6 µM, respectively. Multiple model validations indicated that a single-binding-site model was the most appropriate for evaluating rO.latTBT-bp1 binding. In the competitive binding assay, testosterone, 11-ketotestosterone, and 17ß-estradiol were each bound by rO.latTBT-bp1; rO.latTBT-bp1 showed the strongest affinity for testosterone (inhibition constant, Ki = 3.47 µM). Endocrine-disrupting chemical (synthetic steroid) also bound to rO.latTBT-bp1; the affinity for ethinylestradiol (Ki = 9.29 µM) was stronger than that for 17ß-estradiol (Ki = 30.0 µM). To determine the function of O.latTBT-bp1, we produced TBT-bp1 knockout medaka (TBT-bp1 KO), which we exposed to ethinylestradiol for 28 days. After exposure, the number of papillary processes in TBT-bp1 KO genotypic male medaka was significantly fewer (3.5), compared to that in wild-type male medaka (22). Thus, TBT-bp1 KO medaka were more sensitive to the anti-androgenic effects of ethinylestradiol than wild-type medaka. These results indicate that O.latTBT-bp1 may bind to steroids and act as a gatekeeper of ethinylestradiol action by regulating the androgen-estrogen balance.


Assuntos
Etinilestradiol , Oryzias , Animais , Masculino , Etinilestradiol/toxicidade , Etinilestradiol/metabolismo , Peixes/metabolismo , Lipocalinas/química , Lipocalinas/metabolismo , Estradiol/metabolismo , Testosterona/metabolismo , Oryzias/metabolismo
11.
Aquat Toxicol ; 259: 106505, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37058791

RESUMO

Natural and synthetic oestrogens are commonly found in aquatic ecosystems. The synthetic oestrogen 17α-ethinylestradiol (EE2) is widely used in oral contraceptives and its ecotoxicological effects on aquatic organisms have been widely reported. The natural oestrogen estetrol (E4) was recently approved for use in a new combined oral contraceptive and, after therapeutic use, is likely to be found in the aquatic environment. However, its potential effects on non-target species such as fish is unknown. In order to characterize and compare the endocrine disruptive potential of E4 with EE2, zebrafish (Danio rerio) were exposed to E4 or EE2 in a fish short-term reproduction assay conducted according to OECD Test Guideline 229. Sexually mature male and female fish were exposed to a range of concentrations, including environmentally relevant concentrations of E4 and EE2, for 21 days. Endpoints included fecundity, fertilization success, gonad histopathology, head/tail vitellogenin concentrations, as well as transcriptional analysis of genes related to ovarian sex steroid hormones synthesis. Our data confirmed the strong impact of EE2 on several parameters including an inhibition of fecundity, an induction of vitellogenin both in male and female fish, an alteration of gonadal structures and the modulation of genes involved in sex steroid hormone synthesis in female fish. In contrast, only few significant effects were observed with E4 with no impact on fecundity. The results suggest that the natural oestrogen, E4, presents a more favorable environmental profile than EE2 and is less likely to affect fish reproductive capacity.


Assuntos
Estetrol , Poluentes Químicos da Água , Animais , Masculino , Feminino , Peixe-Zebra/fisiologia , Etinilestradiol/toxicidade , Estetrol/farmacologia , Vitelogeninas , Ecossistema , Poluentes Químicos da Água/toxicidade , Reprodução , Estrogênios/toxicidade
12.
Aquat Toxicol ; 259: 106519, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37061420

RESUMO

This study was conducted for the first time to investigate the long-term impacts of sublethal concentrations of 17 α-ethinylestradiol (EE2) on growth, survival, and reproductive performances in a model shrimp, the red cherry (Neocaridina davidi), females during five successive spawning steps for 7.5 months. Females were distributed in eighteen aquariums and continuously exposed to EE2 at six nominal concentrations of 0 (control), 0.02, 0.2, 2, 20, and 200 µg/L. Growth indices increased up to 0.2 µg/L and then sharply declined up to 200 µg/L. Most reproductive indices significantly decreased at levels > 0.02-0.2 µg/L with increasing EE2 levels. The highest absolute, relative, and actual fecundity values were recorded in the control, with the lowest value at 200 µg/L. With increasing EE2 levels, mean egg volume showed an increasing trend from the third spawning event onwards. Except for the time required to reach the first spawning, inter-spawning intervals considerably decreased with increasing EE2 levels at > 0.2 µg/L, especially from the third spawning stage onwards. Survival of exposed females significantly decreased with increasing EE2 levels. Unlike the body size, the juvenile's survival rates in all exposed treatments were considerably lower than the control. Females at concentrations 0.02-0.2 µg/L gained more body weight and length but produced fewer eggs with lower hatching percentages during five consecutive spawns. The results suggest that EE2 depending on the concentrations can cause unbalanced growth, reduce reproductive performances, especially from the third stage of spawning onwards, and reduce survival rates in brooders and subsequent offspring. In terms of growth, survival, and reproductive indices over successive spawns in ecotoxicology studies, the concentrations of 0.02-0.2 µg/L can be considered as chronic levels, but higher levels may have detrimental effects.


Assuntos
Decápodes , Penaeidae , Poluentes Químicos da Água , Animais , Feminino , Poluentes Químicos da Água/toxicidade , Reprodução , Etinilestradiol/toxicidade , Fertilidade
13.
Sci Total Environ ; 877: 162898, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934939

RESUMO

Untargeted Nuclear Magnetic Resonance metabolomics was employed to study the effects of warming conditions (17-21 °C) and exposure to 17-α-ethinylestradiol (EE2) on the polar metabolome of Ruditapes philippinarum clams, to identify metabolic markers for monitoring/prediction of deviant environmental conditions. Warming alone triggered changes in alanine/aspartate/glutamate, aromatic amino acids, taurine/hypotaurine and homarine/trigonelline pathways, as well as in energy metabolism, suggesting osmoregulatory adaptations and glycolytic/tricarboxylic acid (TCA) cycle activation, possibly accompanied to some extent by gluconeogenesis to preserve glycogen reserves. At 17 °C, the lowest EE2 concentration (5 ng/L) specifically engaged branched-chain and aromatic amino acids to activate the glycolysis/TCA cycle. Notably, a partial metabolic recovery was observed at 25 ng/L, whereas higher EE2 concentrations (125 and 625 ng/L) again induced significant metabolic disturbances. These included enhanced glycogen biosynthesis and increased lipid reserves, sustained by low-level glutathione-based antioxidative mechanisms that seemed active. At 21 °C, response to EE2 was notably weak at low/intermediate concentrations, becoming particularly significant at the highest EE2 concentration (625 ng/L), suggesting higher protection capacity of Ruditapes philippinarum clams under warming conditions. At 625 ng/L, disturbances in alanine/aspartate/glutamate and taurine/hypotaurine metabolisms were observed, with no evidence of enhanced carbohydrate/protein catabolism. This low energy function profile was accompanied by marked antioxidative mechanisms and choline compounds modulation for cell membrane protection/repair. These results help monitor clams´ response to temperature rise and EE2 exposure, paving the way for future effective guidance and prediction of environmental damaging effects.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Temperatura , Ácido Aspártico , Antioxidantes/metabolismo , Taurina/farmacologia , Bivalves/metabolismo , Etinilestradiol/toxicidade , Etinilestradiol/metabolismo , Poluentes Químicos da Água/metabolismo
14.
Aquat Toxicol ; 257: 106473, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36871484

RESUMO

Ethinylestradiol (EE2) and sulfamethoxazole (SMX) are among pharmaceuticals and personal care products (PPCPs) and regarded as emerging contaminants in groundwater worldwide. However, the ecotoxicity and potential risk of these co-contaminants remain unknown. We investigated the effects of early-life long-term co-exposure to EE2 and SMX in groundwater on life-history traits of Caenorhabditis elegans and determined potential ecological risks in groundwater. L1 larvae of wild-type N2 C. elegans were exposed to measured concentrations of EE2 (0.001, 0.75, 5.1, 11.8 mg/L) or SMX (0.001, 1, 10, 100 mg/L) or co-exposed to EE2 (0.75 mg/L, no observed adverse effect level derived from its reproductive toxicity) and SMX (0.001, 1, 10, 100 mg/L) in groundwater. Growth and reproduction were monitored on days 0 - 6 of the exposure period. Toxicological data were analyzed using DEBtox modeling to determine the physiological modes of action (pMoAs) and the predicted no-effect concentrations (PNECs) to estimate ecological risks posed by EE2 and SMX in global groundwater. Early-life EE2 exposure significantly inhibited the growth and reproduction of C. elegans, with lowest observed adverse effect levels (LOAELs) of 11.8 and 5.1 mg/L, respectively. SMX exposure impaired the reproductive capacity of C. elegans (LOAEL = 0.001 mg/L). Co-exposure to EE2 and SMX exacerbated ecotoxicity (LOAELs of 1 mg/L SMX for growth, and 0.001 mg/L SMX for reproduction). DEBtox modeling showed that the pMoAs were increased growth and reproduction costs for EE2 and increased reproduction costs for SMX. The derived PNEC falls within the range of detected environmental levels of EE2 and SMX in groundwater worldwide. The pMoAs for EE2 and SMX combined were increased growth and reproduction costs, resulting in lower energy threshold values than single exposure. Based on global groundwater contamination data and energy threshold values, we calculated risk quotients for EE2 (0.1 - 123.0), SMX (0.2 - 91.3), and combination of EE2 and SMX (0.4 - 341.1). Our findings found that co-contamination by EE2 and SMX exacerbates toxicity and ecological risk to non-target organisms, suggesting that the ecotoxicity and ecological risk of co-contaminants of pharmaceuticals should be considered to sustainably manage groundwater and aquatic ecosystems.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Animais , Sulfametoxazol/toxicidade , Caenorhabditis elegans , Etinilestradiol/toxicidade , Ecossistema , Poluentes Químicos da Água/toxicidade , Preparações Farmacêuticas
15.
Sci Total Environ ; 870: 161911, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36731576

RESUMO

This study was conducted to investigate a comprehensive effect of 17α-ethinylestradiol (EE2) in zebrafish (Danio rerio) with the emphasis on endocrine disruption, oxidative stress and detoxification processes at different levels. Adult male triploid zebrafish were exposed to EE2 administered in feed at two concentrations - 10 and 1000 µg/kg for six weeks. The estrogenic potential of EE2 was evaluated using an analysis of vitellogenin, gene expression focused on reproductive disorders and gonad histological examination. The alterations in antioxidant and detoxification status were assessed using analyses of enzyme activities and changes in transcriptional levels of selected genes. The most significant changes were observed especially in fish exposed to a high concentration of EE2 (i.e., 1000 µg/kg). Such high concentration caused extensive mortality (25 %) mainly in the second half of the experiment followed by a highly significant decrease in the length and body weight. Similarly, highly significant induction of vitellogenin level and vtg1 mRNA expression (about 43,000-fold compared to the control) as well as a significant downregulation of gonad aromatase expression (cyp19a1a) and histological changes in testicular tissue were confirmed in this group. In the group exposed to environmentally relevant concentration of EE2 (i.e., 10 µg/kg), no significant differences in vitellogenin were observed, although all fish were positive in the detection of vitellogenin compared to control, where only 40 % of individuals were positive. In addition, the high concentration of EE2 resulted in significant alterations in most monitored antioxidant and detoxifying enzymes with the exception of catalase, followed by strongly significant upregulation in mRNA expression of gsr, gpx1a, cat and cyp1a genes. Furthermore, a significant decrease in the glutathione reductase activity was recorded in fish exposed to 10 µg EE2/kg. To our knowledge, this is the first study which reports the effects of subchronic per oral exposure to EE2 in adult triploid zebrafish.


Assuntos
Etinilestradiol , Poluentes Químicos da Água , Animais , Masculino , Etinilestradiol/toxicidade , Etinilestradiol/metabolismo , Peixe-Zebra/fisiologia , Exposição Dietética , Vitelogeninas/metabolismo , Antioxidantes/metabolismo , Triploidia , Estresse Oxidativo , Biomarcadores/metabolismo , RNA Mensageiro/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
16.
J Toxicol Environ Health A ; 86(6): 198-215, 2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36803253

RESUMO

The widespread use of 17α-ethinylestradiol (EE2), and other estrogenic endocrine disruptors, results in a continuous release of estrogenic compounds into aquatic environments. Xenoestrogens may interfere with the neuroendocrine system of aquatic organisms and may produce various adverse effects. The aim of the present study was to expose European sea bass larvae (Dicentrarchus labrax) to EE2 (0.5 and 50 nM) for 8 d and determine the expression levels of brain aromatase (cyp19a1b), gonadotropin-releasing hormones (gnrh1, gnrh2, gnrh3), kisspeptins (kiss1, kiss2) and estrogen receptors (esr1, esr2a, esr2b, gpera, gperb). Growth and behavior of larvae as evidenced by locomotor activity and anxiety-like behaviors were measured 8 d after EE2 treatment and a depuration period of 20 d. Exposure to 0.5 nM EE2 induced a significant increase in cyp19a1b expression levels, while upregulation of gnrh2, kiss1, and cyp19a1b expression was noted after 8 d at 50 nM EE2. Standard length at the end of the exposure phase was significantly lower in larvae exposed to 50 nM EE2 than in control; however, this effect was no longer observed after the depuration phase. The upregulation of gnrh2, kiss1, and cyp19a1b expression levels was found in conjunction with elevation in locomotor activity and anxiety-like behaviors in larvae. Behavioral alterations were still detected at the end of the depuration phase. Evidence indicates that the long-lasting effects of EE2 on behavior might impact normal development and subsequent fitness of exposed fish.


Assuntos
Bass , Animais , Bass/metabolismo , Kisspeptinas/metabolismo , Etinilestradiol/toxicidade , Etinilestradiol/metabolismo , Larva , Sistemas Neurossecretores
17.
Ecotoxicol Environ Saf ; 251: 114541, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36657377

RESUMO

Endocrine disrupting chemicals (EDCs) can interact with native hormone receptors to interfere with and disrupt hormone signalling that is necessary for a broad range of developmental pathways. EDCs are pervasive in our environment, in particular in our waterways, making aquatic wildlife especially vulnerable to their effects. Many of these EDCs are able to bind to and activate oestrogen receptors, causing aberrant oestrogen signalling. Craniofacial development is an oestrogen-sensitive process, with oestrogen receptors expressed in chondrocytes during critical periods of development. Previous studies have demonstrated a negative effect of high concentrations of oestrogen on early craniofacial patterning in the aquatic model organism, the zebrafish (Danio rerio). In order to determine the impacts of exposure to an oestrogenic EDC, we exposed zebrafish larvae and juveniles to either a high concentration to replicate previous studies, or a low, environmentally relevant concentration of the oestrogenic contaminant, 17α-ethinylestradiol. The prolonged / chronic exposure regimen was used to replicate that seen by many animals in natural waterways. We observed changes to craniofacial morphology in all treatments, and most strikingly in the larvae-juveniles exposed to a low concentration of EE2. In the present study, we have demonstrated that the developmental stage at which exposure occurs can greatly impact phenotypic outcomes, and these results allow us to understand the widespread impact of oestrogenic endocrine disruptors. Given the conservation of key craniofacial development pathways across vertebrates, our model can further be applied in defining the risks of EDCs on mammalian organisms.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Etinilestradiol/toxicidade , Peixe-Zebra , Receptores de Estrogênio , Estrogênios , Estrona , Disruptores Endócrinos/toxicidade , Poluentes Químicos da Água/toxicidade , Mamíferos
18.
Ecotoxicology ; 32(1): 12-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36547786

RESUMO

Aquatic biota is increasingly being exposed to chemical pollutants due to human activities and the relationship between the level of environmental pollution and fish reproduction is a continuously ongoing issue. The vitellogenin (Vtg) protein synthesis can be induced in the liver of juvenile and male fish after stimulation of the estrogen receptor and therefore, Vtg has been used as a biomarker of xenoestrogen exposure in several fish species. The current study reported the first physicochemical characterization of Vtg from Oreochromis niloticus. Adult male fish were exposed to 17α-ethinylestradiol for Vtg induction. Purified vitellogenin from plasma showed low stability at 25 and 4 °C in saline conditions, and good stability in acidic (low pH) or in heated conditions. The 3D modeling provided useful information on the structure of O. niloticus Vtg showing conserved structural features. According to bioinformatics and experimental results, there are important structural differences between the two chemical forms of Vtg (VtgAb and VtgC) in a phylogenetic context. The present results add information about the development of ecotoxicological immunoassays to study the endocrine disruption in O. niloticus improving the Vtg performance as a biomarker of reproduction in fish.


Assuntos
Ciclídeos , Poluentes Químicos da Água , Animais , Masculino , Biomarcadores/metabolismo , Etinilestradiol/toxicidade , Filogenia , Vitelogeninas/metabolismo , Poluentes Químicos da Água/análise , Proteínas de Peixes
19.
Aquat Toxicol ; 254: 106376, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36566548

RESUMO

Contaminants of emerging concern (CECs) are a class of chemicals that can spread throughout the environment and may cause adverse biological and ecological effects. While there are many different classes of CECs, one of the most well documented in the aquatic environment are pharmaceutical drugs, such as natural and synthetic estrogens. In particular, the widespread presence of the synthetic estrogen 17 α-Ethinylestradiol (EE2) in water may lead to bioaccumulation in sediment and biota. EE2 is the primary component in contraceptive pills, and is a derivative of the natural hormone estradiol (E2). In this study, the mussel Mytilus galloprovincialis was exposed to EE2 in a semi-static and time-dependent experiment, for a total exposure period of 28 days. Biochemical and transcriptomics analyses were performed on mussel digestive glands after exposure for 14 (T14) and 28 (T28) days. Metabolic and DNA impairments, as well as activation of antioxidant and biotransformation enzymes activation, were detected in T28 exposed mussels. RNA-Seq analysis showed significant differential expression of 160 (T14 compared to controls), 33 (T28 compared to controls) and 79 (T14 compared to T28) genes. Signs of stress after EE2 treatment included up-regulation of gene/proteins involved with immune function, lipid transport, and metabolic and antibacterial properties. This study elucidates the underlying mechanisms of EE2 in a filter feeding organisms to elucidate the effects of this human pharmaceutical on aquatic biota.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Humanos , Etinilestradiol/toxicidade , Etinilestradiol/metabolismo , Poluentes Químicos da Água/toxicidade , Expressão Gênica , Preparações Farmacêuticas/metabolismo
20.
Sci Total Environ ; 861: 160594, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36455722

RESUMO

The synthetic estrogen 17α-ethinylestradiol (EE2) is a common component of hormone therapy and oral contraceptives and has been widely used for nearly 60 years. Numerous studies have shown that exposure to EE2 can affect embryonic development in a number of fish species. The effects of parental and embryonic EE2 exposure on embryo developmental toxicity and the underlying molecular mechanisms, however, have rarely been examined. In this study, embryos collected from parental EE2-exposed adult fish were examined to assess EE2-induecd toxicity during embryo development. The rate of embryo development including heart rate, hatching rate, and larval locomotion were measured to assess embryo developmental toxicity. The embryonic transcriptome was used to delineate the related developmental toxicity pathways. Our results suggest that parental and embryonic EE2 exposure resulted in growth retardation including a reduction in embryo heart rate, a delay in the appearance eye pigmentation, decreased hatching rate and impaired larval locomotion. In addition, gene ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Ingenuity Pathway Analysis (IPA) of transcriptome revealed that these impairments are controlled by estrogen receptor and related to eye structure, neuronal and synaptic structure, and behaviour. The key factors identified, including PRKAA2, APOB, EPHB2, OXTR, NR2E3, and POU4F2, could serve as biomarkers for assessing EE2-induced embryo developmental toxicity. For the first time, our results show that eye pigmentation is a potentially sensitive marker of EE2-induced embryo developmental toxicity.


Assuntos
Congêneres do Estradiol , Oryzias , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Etinilestradiol/toxicidade , Congêneres do Estradiol/farmacologia , Transcriptoma , Larva , Desenvolvimento Embrionário , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...